脱硫技术解决方案

来源: 索佳  作者: 索佳  发布于: 2014/3/16 14:18:42  关注度:


一、技术背景

为了控制大气中二氧化硫,早在19世纪人类就开始进行有关的研究,但大规模开展脱硫技术的研究和应用是从二十世纪50年代开始的。经过多年研究目前已开发出的200余种SO2控制技术。这些技术按脱硫工艺与燃烧的结合点可分为:①燃烧前脱硫(如洗煤,微生物脱硫);②燃烧中脱硫(工业型煤固硫、炉内喷钙);③燃烧后脱硫,即烟气脱硫(Flue Gas Desulfurization,简称FGD)。FGD是目前世界上唯一大规模商业化应用的脱硫方式,是控制酸雨和二氧化硫污染的最主要技术手段。

烟气脱硫技术主要利用各种碱性的吸收剂或吸附剂捕集烟气中的二氧化硫,将之转化为较为稳定且易机械分离的硫化合物或单质硫,从而达到脱硫的目的。FGD的方法按脱硫剂和脱硫产物含水量的多少可分为两类:①湿法,即采用液体吸收剂如水或碱性溶液(或浆液)等洗涤以除去二氧化硫。②干法,用粉状或粒状吸收剂、吸附剂或催化剂以除去二氧化硫。按脱硫产物是否回用可分为回收法和抛弃法。按照吸收二氧化硫后吸收剂的处理方式可分为再生法和非再生法(抛弃法)。

国外烟气脱硫研究始于1850年,经过多年的发展,至今为止,世界上已有2500多套FGD装置,总能力已达200,000MW(以电厂的发电能力计),处理烟气量700Mm3/h,一年可脱二氧化硫近10Mt,这些装置的90%在美国、日本和德国。

尽管各国开发的FGD方法很多,但真正进行工业应用的方法仅是有限的十几种。其中湿式洗涤法(含抛弃法及石膏法)占总装置数的73.4%,喷雾干燥法占总装置数的17.7%,其它方法占9.3%。美国的FGD系统中,抛弃法占大多数。在湿法中,石灰/石灰石法占90%以上。可见,湿式石灰/石灰石法在当今FGD系统中占主导地位。

尽管各国在FGD方面都取得了很大的进步,但运行费用相当惊人,而且各种方法均有其局限性,因此,至今许多研究者仍在不断研究开发更先进、更经济的FGD技术。

目前工业化的主要技术有:

①湿式石灰/石灰石—石膏法 该法用石灰或石灰石的浆液吸收烟气中的SO2,生成半水亚硫酸钙或再氧化成石膏。其技术成熟程度高,脱硫效率稳定,达90%以上,是目前国内外的主要方法。

②喷雾干燥法 该法是采用石灰乳作为吸收剂喷入脱硫塔内,经脱硫及干燥后为粉状脱硫渣排出,属半干法脱硫,脱硫效率85%左右,投资比湿式石灰石-石膏法低。目前主要应用在美国。

③吸收再生法 主要有氨法、氧化镁法、双碱法、W-L法。脱硫效率可达95%左右,技术较成熟。

④炉内喷钙—增湿活化脱硫法 该法是一种将粉状钙质脱硫剂(石灰石)直接喷入燃烧锅炉炉膛的脱硫技术,适用于中、低硫煤锅炉,脱硫效率约85%。


二、脱硫技术工艺介绍

(一)、双碱法脱硫工艺

1、 湿式石灰/石灰石—石膏法 该法用石灰或石灰石的浆液吸收烟气中的SO2,生成半水亚硫酸钙或再氧化成石膏。其技术成熟程度高,脱硫效率稳定,达90%以上,是目前国内外的主要方法。

双碱法是先用可溶性的碱性清液作为吸收剂吸收SO2,然后再用石灰乳或石灰对吸收液进行再生,由于在吸收和吸收液处理中,使用了不同类型的碱,故称为双碱法。钠钙双碱法是以碳酸钠或氢氧化钠溶液为第一碱吸收烟气中的SO2,然后再用石灰或熟石灰作为第二碱,处理吸收液,再生后的吸收液送回吸收塔循环使用。由于采用钠碱液作为吸收液,不存在结垢和浆料堵塞问题,且钠盐吸收速率比钙盐速率快,所需要的液气比低很多,可以节省动力消耗。

2、 钠钙双碱法工艺反应原理

该法使用Na2CO3或NaOH液吸收烟气中的SO2,生成HSO32-、SO32-与SO42-,反应方程式如下:

脱硫过程

(1)

(2)

(3)

其中:式(1)为启动阶段Na2CO3溶液吸收SO2的反应;

式(2)为再生液pH值较高时(高于9时),溶液吸收SO2的主反应;

式(3)为溶液pH值较低(5~9)时的主反应。

氧化过程(副反应)

(4)

(5)

再生过程

(6)

(7)

式(6)为第一步反应再生反应,式(7)为再生至pH>9以后继续发生的主反应。

钠钙双碱法为脱硫工艺,以石灰作为主脱硫剂,钠碱为助脱硫剂。由于在吸收过程中以钠碱为吸收液,脱硫系统不会出现结垢等问题,运行安全可靠。且由于钠碱吸收液和二氧化硫反应的速率比钙碱快很多,能在较小的液气比条件下,达到较高的二氧化硫脱除率。

(二)、低阻高效喷雾脱硫工艺

喷淋塔也成为喷雾塔,是在吸收塔内上部布置几层喷嘴,脱硫剂通过喷嘴喷出形成液雾,通过液滴与烟气的充分接触,来完成传质过程。空塔喷淋吸收塔主体为矩形塔体,塔体内配置有多个高效喷嘴及高效除雾装置,浆液在吸收塔内通过高效雾化喷嘴雾化,雾化覆盖面积可达200%,形成良好的气液接触反应界面,烟气进入塔内之后,在塔内匀速上升,与雾状喷液进行全面高效混合接触,脱除SO2等酸性气体。根据燃煤含硫量、脱硫效率等,一般在脱硫塔内布置几层喷嘴。喷嘴形式和喷淋压力对液滴直径有明显的影响。减少液滴直径,可以增加传质表面积,延长液滴在塔内的停留时间,两者对脱硫效率均起到积极的作用。液滴在塔内的停留时间与液滴直径、喷嘴出口速度和烟气流动方向有关。带雾点的烟气上升至高效除雾装置时,通过除雾装置的作用,气液进行接触二次吸收并同时得到有效分离,从而避免烟气夹带雾沫,最大限度地减少烟气带水现象。

a.空塔喷淋烟气洗涤技术是现在国际国内技术成熟,最为前沿流行使用的空塔喷淋技术;

b.空塔喷淋是经过大型石灰石-石膏法演变而来的喷淋塔,具有很高的脱硫效率,最高时可达95%;

c.可操作弹性大,对煤种变化适应性强,含硫率在4%以下可确保二氧化硫排放浓度,在锅炉工况110%以下均能正常等等;

d.系统阻力小,运行费用低,权为大型湿法的十分之一;

e.采用进口的除雾技术,烟气含湿量确保符合要求;

f.不存在堵塞问题;

g.设备利用率高,保证与锅炉同步运行达100%以上;

h.空塔投资与其它塔形相差无几;

i.运行操作简便,维护方便,稳定性是其它塔形的三到五倍。

除雾器可安装在吸收塔上部,用以分离净烟气夹带的雾滴。除雾器出口烟气湿度不大于75mg/Nm3,分为两级布置在脱硫塔上部,设置两级四通道平板式除雾器,一层粗除雾,一层精除雾。

除雾器型式能够保证其具有较高的可利用性和良好的去除液滴效果,且保证脱硫后的烟气以一定流速均匀通过除雾器,防止发生二次携带,堵塞除雾器。

除雾器系统的设计考虑了FGD装置入口的飞灰浓度的影响。该系统还包括去除除雾器沉积物的冲洗和排水系统,运行时根据给定或可变化的程序,既可进行自动冲洗,也可进行人工冲洗。设计了合理的冲洗时间和冲洗水量,既能冲洗干净除雾器,又防止生成二次携带。

位于下面的第一级除雾器是一个大液滴分离器,叶片间隙稍大,用来分离上升烟气所携带的较大液滴。上方的第二级除雾器是一个细液滴分离器,叶片距离较小,用来分离上升烟气中的微小浆液液滴和除雾器冲洗水滴。烟气流经除雾器时,液滴由于惯性作用,留在挡板上。由于被滞留的液滴也含有固态物,因此存在挡板上结垢的危险,同时为保证烟气通过除雾器时产生的压降不超过设定值,需定期进行在线清洗。为此,设置了定期运行的清洁设备,包括喷嘴系统。冲洗介质为工业水。

一级除雾器的上下面和二级除雾器的下面设有冲洗喷嘴,正常运行时下层除雾器的底面和顶面,上层除雾器的底面自动按程序轮流清洗各区域。除雾器每层冲洗可根据烟气负荷、除雾器两端的压差自动调节冲洗的频率。

冲洗水由除雾器冲洗水泵提供,冲洗水还用于补充吸收塔中的水分蒸发损失。

Tag标签:
Copyright © 2014 深圳市索佳能源科技有限公司 版权所有
地址: 深圳市宝安区西乡航空路索佳科技园  电话: 0755-29979188、27692939  传真: 0755-27692555  
备案: 粤ICP备14013214号  支持: 1STUDIO  统计: